

The Department of Computer Science

The Development of a Video Game using
Procedural Terrain Generation

CIS3140 CW2 – Project Report

Student: James Edwards

Supervisor: Saad Saihi

Date: 6 May 2025

This Report is submitted in partial fulfilment of the requirements for the BSc Honours
Computing (Games Programming) Degree at Edge Hill University.

Abstract
This project explores the creation of a small video game that is centred around the use
of procedural terrain generation. The achievement in this project is creating procedural
generated terrain using two noise algorithms, Fractal Perlin Noise and Worley Noise.
The Fractal Perlin noise algorithm was used in this project to create the base structure
of the mesh as well as rocky formations in the terrain and the Worley Noise terrain was
used to generate ridges in the terrain to enhance the detail of the terrain. These noise
functions are showcased in 4 different levels in the game. Each level showcases a
different noise technique. One level uses standard perlin noise, one uses fractal perlin
noise, one uses Worley noise, and the final level uses a combination of fractal and
perlin noise. Additionally, an attempt was made to implement spline-based terrain
generation into the project.

Additionally, a physics-based skier character controller can be used to play the levels in
the game, this character features a fully rigged and animated character model.

Finally, a summary of cutting-edge procedural terrain generation techniques is
showcased in the literature review section of this report.

Acknowledgments
Firstly, I would like to thank my dissertation supervisor Saad Saihi for advising me and
providing help complete this dissertation project.

I would also like to thank Kyle Worrall for his mentorship throughout the 3rd year of my
undergraduate degree.

Thank you to my Mum, Dad and Sisters for always being there for me and dealing with
me playing video games until late into the night. I can’t believe that the passion I had for
playing video games has now turned into a degree.

Lastly, I would like to thank my girlfriend Niamh for her support and encouragement
throughout my entire degree. I couldn’t have done it with you.

Table of Contents
Abstract .. 1

Acknowledgments ... 2

Table of Contents ... 3

Table of Figures ... 5

Chapter 1: Introduction .. 6

1.1 Motivations for Project... 6

1.2 Aim and Objectives ... 7

Chapter 2: Background / Literature Review .. 8

2.1 A Review of Noise based PCG Techniques .. 8

2.1.1 Perlin Noise .. 8

2.1.2 Fractal Noise .. 9

2.1.3 Worley Noise .. 10

2.2 Literature Review .. 11

Chapter 3: Design .. 14

3.1 Terrain .. 14

3.2 Gameplay ... 14

3.3 Character Controller ... 14

3.4 Skier Character ... 15

3.5 User Interface (UI) ... 16

Chapter 4: Development .. 17

4.1 Terrain .. 17

4.1.1 Perlin Noise .. 17

4.1.2 Fractal Perlin Noise ... 18

4.1.3 Worley Noise .. 20

4.1.4 Combining Fractal Perlin and Worley Noise .. 22

4.1.5 Spline Terrain ... 23

4.1.6 Terrain Material... 23

4.2 Skier Character Model ... 24

4.2.1 UV Mapping .. 24

4.2.2 Textures ... 26

4.2.3 Rigging ... 26

4.2.4 Animations ... 28

4.2.5 Props ... 29

4.2.6 Exporting .. 31

4.3 Character Controller ... 31

4.3.1 Ground Check .. 33

4.3.2 Animation Control... 34

4.4 Checkpoints ... 34

4.5 UI ... 36

Chapter 5: Evaluation & Conclusion .. 38

5.1 Summary of Project ... 38

5.2 Critical Evaluation ... 38

5.3 Future Work .. 39

References .. 40

Appendix ... 43

A: Renders of Player 3D Model ... 43

B: Instructions for Use .. 44

Table of Figures
Figure 1 Project Aims and Objectives ... 7
Figure 2 Perlin Noise 2D Image (Unity, N.d) .. 8
Figure 3 Perlin Noise Based Terrain mesh .. 9
Figure 4 Fractal Perlin Noise Heightmap (Dunn, N.d) .. 10
Figure 5 2D Worley Noise Texture (42 Yeah, 2023) .. 10
Figure 6 The Isovist Method Formula (Pech, Lam and Masek, 2020) 12
Figure 7 Lonely Mountains Snow Riders (Medagon Industries, 2024) 15
Figure 8 Main Menu Design ... 16
Figure 9 Level complete Design ... 16
Figure 10 Flat Terrain Function .. 17
Figure 11 Perlin noise Terrain Output ... 18
Figure 12 Frequency Formula .. 19
Figure 13 Octave Amplitude Formula ... 19
Figure 14 Fractal Perlin Noise Terrain Output ... 19
Figure 15 2D Euclidean Distance Function (Chugani, 2024) 21
Figure 16 Worley Noise Landscape Output .. 21
Figure 17 Combination of Fractal Noise Terrain and Worley Noise Terrain 22
Figure 18 Add Spline Function (Not Working) (Note this function has not been included
in the artefact) ... 23
Figure 19 Initial Skier Model .. 24
Figure 20 Skier Model With Seams ... 25
Figure 21 Skier Model UV Map ... 25
Figure 22 Skier Model With Textures .. 26
Figure 23 Skier Model Texture ... 26
Figure 24 Skier Broken Animations in FBX Review ... 27
Figure 25 Skier Rig .. 28
Figure 26 Skier Animation List ... 28
Figure 27 Ski Goggles ... 29
Figure 28 Ski Poles 3D model .. 30
Figure 29 Skis Model .. 30
Figure 30 Image of skier Model Exported into Unreal Engine 31
Figure 31 Skier Turning Curve .. 32
Figure 32 Ground Check Function ... 33
Figure 33 Skier Animation montage ... 34
Figure 34 Max X Formula ... 35
Figure 35 Heads Up Display Widget ... 36
Figure 36 Level End Screen Widget .. 36
Figure 37 Main Menu Widget ... 37
Figure 38 Untextured Skier Model Render .. 43
Figure 39 Skier UV Map Render ... 43
Figure 40 Final Skier Render .. 43

Chapter 1: Introduction
Procedural content generation is a field in game development where content such as
3D models, levels, etc is generated via the use of algorithms (Liu et al., 2019;
Summerville et al., 2018). Many games such as Minecraft (Mojang, 2011), No Mans Sky

(Hello Games, 2016) and Bad North (Stålberg et al., 2018) use Procedural content

generation. Procedural content generation is useful to game studios as it helps reduce the

man hours involved from artists and designers (Summerville et al., 2018) which allows the

studio to reduce costs as well as increase the amount of content in a game. This will

increase the replay ability of the game(Summerville et al., 2018).

This project primarily focuses on the procedural content generation of gameplay
focused terrain. This focus has been chosen as the majority of research on procedural
terrain generation algorithm focuses on generating realistic and aesthetically pleasing
terrain but does not go into detail on how the terrain affects the gameplay elements in
the game (Pech, Lam and Masek, 2020). To do this, this project will be programmed in
C++ using Unreal Engine 5 and use make use of Unreal Landscape spline component to
create paths on a mountain that can be used for a skiing video game.

1.1 Motivations for Project
When analysing literature, a common issue with the current research in the field of
procedural content generation was found. This issue is that many forms of procedural
content generation only focus on generating terrain that looks realistic and
aesthetically pleasing (Huang and Yuan, 2023; Su et al., 2024; Golubev, Zagarskikh and
Karsakov, 2016) but does not focus on how gameplay elements would be implemented
with the new procedural content generation algorithm that papers are discovering and
inventing (Pech, Lam and Masek, 2020). This work attempts to fill this gap by creating a
video game that uses procedural terrain generation to generate the levels in the game.
As there has already been a large amount of research on creating mountainous terrain
(Huang and Yuan, 2023; Su et al., 2024; Golubev, Zagarskikh and Karsakov, 2016) this
game will be set on mountainous terrain and use some of the algorithms that is already
being commonly used for procedural terrain generation such as the perlin noise
algorithm. Due to the setting of the game being on a mountain, this game will be a skiing
game. Additionally, because many of the algorithms generate realistic terrain the skiing
character should be Physics-based to match this realism.

1.2 Aim and Objectives
The Aim of the project is to: Create a skiing game that uses procedural content
generation (PCG) to generate the terrain and the levels.

No Objective Title Objective Description

1 Create procedural skiing
mountain terrain using
PCG techniques.

Create a mountain by first procedurally generating a
heightmap using PCG techniques such as fractal
perlin noise then applying this heightmap to an
Unreal Engine Landscape.

2 Sculpt terrain using
Unreal Engine Terrain
Splines.

Create a procedurally generated spline path and
then apply this path to the landscape generated in
objective 1. This spline path can later be used in
objective 4 and 5.

3 Create a physics-based
skiing character
controller.

Create a physics-based skiing character controller
that will ski down the procedural landscape.

4 Implement gameplay
mechanics such as
checkpoints, level start
and finish and high score.

Add a start and finish line to the game as well as a
checkpoints system to make a complete game. Also
add a high score system that allows players to
compete for the best time.

5 Add polish to the game by
adding a user interface

Add polish to the game by creating a main menu and
a heads-up display

FIGURE 1 PROJECT AIMS AND OBJECTIVES

Chapter 2: Background / Literature Review
2.1 A Review of Noise based PCG Techniques
One common technique for procedurally generating terrain by generating 2D noise and
using it as a heightmap for a terrain mesh (Hyttinen, Mäkinen and Poranen, 2017). There
are various noise algorithms that can be used to generate this 2D noise such as the
value, perlin and Worley noise algorithms.

2.1.1 Perlin Noise
The perlin noise algorithm is an algorithm invented by Ken Perlin in his seminal paper
‘An Image Synthesizer’ (Perlin, 1985). This algorithm generates pseudo-random
numbers between two values that gradually increase and decrease. These values are
often values between 0.0 and 1.0 (Unity, N.d; Hart, 2001) but some perlin noise
algorithms such as the algorithm used by Unreal Engine generate values between -1.0
and 1.0 (Epic Games, N.d).

This algorithm starts by taking both an X and a Y floating-point number as an input and
then finds the nearest 4 corners that they fit into on a 2d grid of integers (Raouf, N.d).
For Example, if the input was (3.3, 5.8) the corners would be (3,5), (4,5), (3,6) and (4,6).
Then a pseudo random direction vector will be assigned to each one of these points
This vector will often be generated using some form of hashing function (Kora, 2007)
(Pseudo random directions are used so that the direction will be the same each time
the perlin noise function is called (Dogo's Science 2, 2024)). Once the direction vectors
have been set the dot product between the gradient vector at each corner and the
offset vector (Offset Vector = (X, Y) - (CornerX, CornerY)) will be calculated. These dot
products are used to quantify the influence of each corner’s direction vector on the
point. Finally, the dot products are interpolated together in order to produce a smooth
noise value. Then they are interpolated linearly (Dogo's Science 2, 2024). Perlin noise is
control via two parameters, amplitude that controls the strength of the perlin noise
(Etherington, 2022) as well as frequency that controls how many peaks and valleys their
will be in the noise (Etherington, 2022).

This perlin noise function can be used to create a 2D image heightmap as shown in the
image below.

FIGURE 2 PERLIN NOISE 2D IMAGE (UNITY, N.D)

The perlin noise in this image has been generated using Unity’s in built perlin noise
function (Unity, N.d) although both Unity and Unreal Engine have an in-built Perlin noise
function (Unity, N.d; Epic Games, N.d). This image can be used as a height map on a 3d
terrain mesh. The image below is an example of a 2D height map with the perlin noise
function applied to it.

FIGURE 3 PERLIN NOISE BASED TERRAIN MESH

Many popular video games have used Perlin Noise in order to generate their terrain
procedurally. One example of perlin noise being used is the survival and crafting game,
Minecraft (Mojang, 2011). Two major benefits of the fractal noise algorithm is that it is
infinitely tile able and it can be recreated by just using the same Frequency and
Amplitude variables. Minecraft (Mojang, 2011) uses this so that the entire terrain of its
endless map doesn’t have to be saved when the player creates a new world.
Additionally, Minecraft (Mojang, 2011) uses a chunk-based system that doesn’t require
the entire terrain to be loaded at once just the chunks that the player is in and nearby.

2.1.2 Fractal Noise
While perlin noise can create smooth looking terrain it doesn’t generate terrain that
looks as rough as real-world terrain. One technique that is used in order to resolve this
issue is Fractal Noise. Fractal Noise is when multiple layers of noise are added on top
of each other in order to generate a more complex and detailed noise heightmap. These
multiple layers of noise are known as octaves (Lague, 2016). Typically, each octave of
noise has a lower amplitude and higher frequency then the previous layer of noise. In
most implementations of fractal noise, persistence and lacunarity variables are used to
control how much lower the amplitude of the noise and how much higher the frequency
of the noise is for each octave. Persistence variable controls how much the drop off in
the amplitude is (how persistent it is) and Lacunarity is used to control how much the
increase in frequency is for each octave of noise (Lague, 2016).

Below is an example of a terrain heightmap that uses Fractal Perlin Noise.

FIGURE 4 FRACTAL PERLIN NOISE HEIGHTMAP (DUNN, N.D)

2.1.3 Worley Noise
Another algorithm for generating noise is the Worley Noise algorithm (also known as the
Cellular Noise algorithm). The Worley Noise algorithm is a noise function created by
Steven Worley in his 1996 player “A Cellular Texture Basis Function” (Worley, 1996;
Gonzalez and Lowe, 2015).

The Worley Noise algorithm works by first deciding the size of the grid the cellular noise
algorithm is going to be used on as well as how many Points the algorithm uses. Then
these points will all be placed at random locations within the grid. In order to find the
value at each pixel the distances between the pixel and each point will be calculated
before the lowest value is returned as the height at the pixel (Gonzalez and Lowe, 2015).

When Worley Noise is output onto a 2d image texture it forms an image that looks
similar to a field of cells.

FIGURE 5 2D WORLEY NOISE TEXTURE (42 YEAH, 2023)

2.2 Literature Review
In this section relevant pieces of literature in the field of 3D terrain generation will be
analysed and discussed to create a summary of existing knowledge and recent
developments in the field of 3D terrain generation.

In a 2024 conference paper Jain, Sharma and Rajan (2024) proposed a frame that can
be used in order to generate infinite 3D terrain. This method of terrain generation uses
two deep learning modules. The first model is the terrain completion module which is
trained to generate the infinite terrain which is then used by the second module which
is known as the Terrain Enhancement module. This model is trained to enhance the
detail of the terrain. Additionally, this module allows multiple different levels of detail
for the terrain to be generated. This allows for the terrain to be more optimised in a
gameplay setting where the terrain has to be rendered each frame, this is because the
terrain that is far away from the player can be rendered at a low level of detail to
improve performance while the terrain the player is nearest to can be rendered at the
highest possible level of detail. Although this method for 3D terrain generation is
impressive as it can generate terrain that looks very similar to terrain generated via the
use of real world heightmaps, this paper does not fairly evaluate the terrain that is
generated using their method with other advanced methods for terrain generation such
as Fractal Perlin Noise instead only comparing it to the most basic forms of perlin noise
based terrain generation.

In a 2023 journal article Huang and Yuan (2023) proposed a novel disentangled
generative model named StyleTerrain using a Generative Adversarial Network (GAN)
that can be used to generate controllable high-quality terrain. A Generative Adversarial
Network is comprised of a generator network and a discriminator network (Huang and
Yuan, 2023). The generator network learns and captures the potential distribution of the
dataset and is tasked with generating new data (Gonog and Zhou, 2019). The role of the
discriminator network is to attempt to determine whether the input data is from the
actual dataset or if the data was created by the generator network (Gonog and Zhou,
2019). These two networks are trained through a zero-sum game where the
discriminator attempts to correctly identify real and generated data and the generator
attempts to trick the discriminator into incorrectly identifying the generated data as real
data (Huang and Yuan, 2023). Due to one network's loss being another network’s gain
both networks must continually improve, resulting in increasingly realistic data
generation (Gonog and Zhou, 2019). In the StyleTerrain created by Huang and Yuan
(2023) the “Terra Advanced Spaceborne Thermal Emission and Reflection Radiometer
(ASTER) Global Digital Elevation Model (GDEM) Version 3 (aka. ASTER GDEM V3)”
(Huang and Yuan, 2023) data set was used as training data for their model. By using this
dataset Huang and Yuan (2023) was able to produce highly realistic terrain heightmaps.
One downside of this paper is that they only display a heightmap that they created by
using an image. It would be greatly improved if this terrain was used on a 3D mesh as
many papers do this (Pech, Lam and Masek, 2020; Golubev, Zagarskikh and Karsakov,
2016). Additionally other papers have described ways to increase the detail of terrain

scans such as Su et al. (2024)’s paper that details algorithms that enhance the detail of
pre scanned DEM data. This DEM data is terrain scans of real-world terrain that are
enhanced in this paper before being displayed in a 3D environment.

In 2020 an IEEE paper by Pech, Lam and Masek (2020) proposed a new novel method
for generating terrain. This method was developed as a majority of research in the field
of procedural terrain generation was focused on generating aesthetically pleasing
landscapes with little attention given to generating terrain that could support gameplay
mechanics and game design techniques. Pech, Lam and Masek (2020)’s terrain
generation aimed to solve this problem by writing a terrain generation algorithm that
includes game design features such as chokepoints, strongholds and hidden areas so
that the terrain could be used to create maps for first person shooter (FPS) video
games. This method allows game designers to have greater control on the outputted
terrain allowing them to tailor the terrain to the type of map they would like to create.
This allows this technique of terrain generation to be used on more games than just FPS
games. The method proposed by Pech, Lam and Masek (2020) uses 3D Isovist values in
order to generate terrain and in this paper they also proposed two new methods for
accurately calculating the volume of an Isovist. Method 1 the “Isovist Method” (Pech,
Lam and Masek, 2020) is ample to calculate the volume of a 3D Isovist by using a set of
N Isovist radial vectors using the formula below

𝑉𝑜𝑙𝑢𝑚𝑒 =
4𝜋

3

∑ |𝑟𝑛|3𝑁
𝑛=1

𝑁

FIGURE 6 THE ISOVIST METHOD FORMULA (PECH, LAM AND MASEK, 2020)

The second method for calculating the volume of a 3D Isovist that Pech, Lam and
Masek (2020) proposed was a “Monte Carlo-Based” method. In this paper Pech, Lam
and Masek (2020) states that Monte Carlo Integration is an established method of
calculating the volume of an object but could not find an example of it being applied to
calculating the volume of a 3D Isovist making this method a novel way to calculate the
volume of a 3d Isovist. This method works by taking a set of random points from within
the known volume of the Isovist and then using the points that are also inside the actual
Isovist volume to approximate the size of the 3D Isovist. While this papers method of
generating terrain generates terrain that both looks good as well as adheres to
gameplay requirements from designers. One drawback of this method is that unlike
perlin noise, the terrain generated in this method cannot be regenerated by using the
same parameters. Due to this, this technique would not be suitable for generating
terrain for vast open worlds seen it open world games such as Minecraft (Mojang, 2011)
and No Mans Sky (Hello Games, 2016).

In a 2019 paper Liu et al. (2019) was able to use procedural content generation to be
able to generate procedural levels that could be used in the strategy tower defence
game ‘Kingdom Rush: Frontiers’ (Ironhide Game Studio, 2013) . In order to create these
procedural levels, the main components of what makes up a level in ‘Kingdom Rush:
Frontiers’ (Ironhide Game Studio, 2013) was first analysed in order to find the 3 main

building blocks that make up a level. This building blocks where Roads, Towers and
Monsters. After breaking the levels down into these building blocks each of these
building blocks was able to be generated procedurally using a variety of procedural
content generation algorithms. A criticism of this paper is that the procedural
generation algorithm that was created is only suitable for generating levels in one game
and is not suited for use in other games. Although this is true, the technique of breaking
down the levels into smaller building blocks and then creating algorithms to be able to
generate each different building blocks could be applied to other genres of games. An
example of how this could be used on another game is that in the game Overwatch
(Blizzard Entertainment, 2016) you could break down the levels into the main building
blocks of objectives, buildings and spawn locations. Additionally, many other tower
defence games could be broken down into blocks that are very similar to the ones used
in ‘Kingdom Rush: Frontiers’ (Ironhide Game Studio, 2013) for example the game
Bloons Tower Defence 6 (Ninja Kiwi, 2018) could be broken down into Roads, Open
Space and Balloons. Roads is the same as another one of the blocks used in ‘Kingdom
Rush: Frontiers’ (Ironhide Game Studio, 2013) as well as Balloons that act as monsters
in Bloons Tower Defence 6 (Ninja Kiwi, 2018). Meanwhile open space is similar to
towers as the only difference is that in Bloons Tower Defence 6 (Ninja Kiwi, 2018) the
towers can be placed anywhere where there is open space as appose to ‘Kingdom
Rush: Frontiers’ (Ironhide Game Studio, 2013) that has set locations of the towers that
can be built by the player.

In 2016 a paper by Golubev, Zagarskikh and Karsakov (2016) proposed a procedural
terrain generation algorithm that used a modified version of the Dijkstra’s pathfinding
algorithm. This method allows for designers to have more control over the output of the
terrain by modifying different parameters and weight functions. Although the terrain
generated using this algorithm was highly controllable, the images of the mountain
terrain shown in this method does not look very realistic or aesthetically pleasing. Due
to this, this method is not suitable for generating mountainous terrain. Although one
benefit of this method is that it generates incredibly realistic looking desert landscapes,
other methods for terrain generations such as the methods proposed by Pech, Lam and
Masek (2020) as well as perlin noise-based landscapes are not used to generate
dessert terrain which means that this PCG technique fills a gap in knowledge of
generating desert terrain.

Chapter 3: Design
3.1 Terrain
The terrain designed in this game will be rocky mountainous terrain with paths for a
skier to ski down. These paths will be created with Unreal Engines Terrain spline paths.
These paths will also be generated procedurally by using random points on the terrain.
Additionally, these paths should also go downwards, and the finish should be at the
bottom of the mountain.

The rock parts of the terrain will be generated by using a terrain height map. These
height maps should have noise functions applied to them. A fractal perlin noise
function will be used to create detailed rocky terrain, and a Worley noise algorithm will
be created to add ridges to this terrain for a more realistic look.

Additionally, the material used on the mountain should be a snowy material that
becomes a rocky material when the slope is very steep.

3.2 Gameplay
The main gameplay loop of the game is to try and reach the bottom of the mountain as
fast as possible, a Game timer will be used to track how long it is taking the player to
complete the level and the player will be incentivised to replay the level to take
advantage of the extra replay ability that is gained from using procedural content
generation.

Additionally, checkpoints will be positioned along this track and all of the checkpoints
must be passed for the player to complete the level.

3.3 Character Controller
The character controller will be physics based and be controlled by applying forces to
the player. To move forward the player will be able to push the ski poles along the
ground to gain a boost of speed. Additionally, when the player is moving at high speeds
the skier should lean down to become aerodynamic and move faster because of this.
This is to make the games movement more realistic as it would be hard for a skier to
push themselves along with their poles if they’re already moving at a high speed. The
player must also be able to slow themselves by breaking, this will trigger an animation
and slow the player down. Finally, the player must also be able to steer left and right.

3.4 Skier Character
The player character model will be in a low poly art style as it will be based off the player
model from Loney Mountains: Snow Riders (Medagon Industries, 2024). An image of
this characer is shown below.

FIGURE 7 LONELY MOUNTAINS SNOW RIDERS (MEDAGON INDUSTRIES, 2024)

It should include a helmet as well as ski poles, goggles and skis. Additionally, it should
include the following animations:

• Standing Still (Idle)
• Pushing (Move forward)
• Leaning Forward
• Breaking
• Falling

3.5 User Interface (UI)
A main menu will be used so that the player can start and quit the game. A design was
created of the main menu and is displayed in the image below. The Menu on the left-
hand side will be created with a user interface and the grey box that says skier
character will be the 3d model of the skier. Finally, a mountain background will be
created with Unreal Engines Landscaping tools.

FIGURE 8 MAIN MENU DESIGN

A design for the level complete menu was also created. It features the time that the
user completed the level in as well as an option to restart the level and return back to
the main menu.

FIGURE 9 LEVEL COMPLETE DESIGN

The game will also feature text at the top of the screen that displays a timer of the
current level so the user can keep track of their progress while they are completing the
level.

Chapter 4: Development
4.1 Terrain
The first step in creating the terrain was to create a flat landscape. The ALandscape
component was used for this as it can generated terrain based on an unsigned 16-bit
integer heightmap as well as the landscape splines to shape paths into the terrain. To
create this terrain a C++ class known as TerrainGenerator.cpp as created as well as a
header file named TerrainGenerator.h. The function below was created to gnerate a flat
landscape. In order to create a landscape Quads Per Component and SizeX and SizeY
must first be calculated. The heightmap that is used in this flat terrain has every vertex
set to 32768 as this is the middle value of the uint16 variable.

FIGURE 10 FLAT TERRAIN FUNCTION

4.1.1 Perlin Noise
The Perlin Noise Function is a commonly used function for procedural content
generation. Due to this, most game engines include an in-built function that allows the
use of Perlin Noise. In Unreal Engine the function FMath::PerlinNoise2D is available to
be used (Epic Games, N.d). This function returns a perlin noise sample at a Vector 2D
location(Epic Games, N.d). This value will range from -1.0 and 1.0 (Epic Games, N.d). As
the perlin noise function is a relatively complex noise function that would require a
pseudo random number function to also be written the usage of the inbuilt noise

function will be opted for in this case. Another library that was considered before opting
for the in-built Unreal function was an Unreal Engine Plugin called Fast Noise Generator
(Rockam, 2020) which allows access to the fast Noise Library in Unreal (Rockam, 2020;
Peck, 2024), the inbuilt function was opted for in this case as it can be simply just used
in Unreal Engine and does not require any extra dependencies or installations.

The perlin noise function will be applied to the terrain by looping through each vertex on
the terrains heightmap, using the X and Y coordinate of this vertex and an input and
adding its output on top of the default value for the flat terrain (32768). Additionally,
before Octaves were added to this perlin noise the X and Y coordinate Vector was
multiplied by a variable called Frequency. This variable will control the scale of the
noise, a higher frequency will cause faster changes in height while a smaller frequency
will cause quicker changes in height (Etherington, 2022). Finally, before being added
onto the height map the perlin value returned by the function was multiplied by another
variable called amplitude. This variable controls the maximum and minimum value that
can be added to the terrain by the perlin noise function. A larger amplitude will cause
the terrain to have a greater variance in height and a smaller value will cause the effect
of the perlin noise function on the terrain to be less noticeable, due to the smaller
variance in height (Etherington, 2022). An image of the terrain with perlin noise applied
to it is shown below. This image uses terrain with an amplitude value of 1700.0 and a
frequency value of 0.015.

FIGURE 11 PERLIN NOISE TERRAIN OUTPUT

As shown in the image above this function creates smooth rolling hills on the terrain.

4.1.2 Fractal Perlin Noise
In order to enhance the detail of the Perlin Noise terrain multiple layers of this noise will
be added on top of each other. This is known as adding octaves of fractal perlin noise
(Etherington, 2022; Lague, 2016). Each one of these octaves of noise will be added with
a higher frequency and a lower amplitude then the previous octave (Lague, 2016). This
will create a rougher and rockier look on the terrain. In order to add octaves of perlin
noise 3 new parameters will be added to the code. These parameters will be, Octaves,

this parameter will control the number of octaves of perlin noise added to the terrain.
Lacunarity, this will control how much the increase in frequency for each octave
(Lague, 2016), and finally Persistence which will control how much the decrease in
amplitude is for each octave (Lague, 2016).

Due to these new parameters the octave frequency and octave amplitude must be
calculated before using the perlin noise function. The following formulas are used to
find the octave frequency and octave amplitude.

𝑂𝑐𝑡𝑎𝑣𝑒 𝐹𝑟𝑒𝑞𝑢𝑛𝑐𝑦 = 𝐹𝑟𝑒𝑞𝑒𝑛𝑐𝑦 𝑜𝑓 𝑓𝑖𝑟𝑠𝑡 𝑜𝑐𝑡𝑎𝑣𝑒 ∗ (𝐿𝑎𝑐𝑎𝑛𝑎𝑟𝑖𝑡𝑦 ∗ 𝑂𝑐𝑡𝑎𝑣𝑒 𝑁𝑢𝑚𝑏𝑒𝑟)

FIGURE 12 FREQUENCY FORMULA

𝑂𝑐𝑡𝑎𝑣𝑒 𝐴𝑚𝑝𝑙𝑖𝑡𝑢𝑑𝑒 =
𝐴𝑚𝑝𝑙𝑖𝑡𝑢𝑑𝑒 𝑜𝑓 𝑓𝑖𝑟𝑠𝑡 𝑜𝑐𝑡𝑎𝑣𝑒

(𝑃𝑒𝑟𝑠𝑖𝑠𝑡𝑎𝑛𝑐𝑒 ∗ 𝑂𝑐𝑡𝑎𝑣𝑒 𝑁𝑢𝑚𝑏𝑒𝑟)

FIGURE 13 OCTAVE AMPLITUDE FORMULA

After the new values for frequency and amplitude have been calculated the value of the
octave can then be calculated in the same way as in the perlin noise without octaves.
Expect using Octave Frequency and Octave Amplitude in place of the standard
Frequency and Amplitude values. This will be looped for each octave in defined by the
octave value and the perlin values will be added onto the height map each time in order
to have the sum of all the octaves added together at the end. An example of terrain
generated using this method is shown in the screenshot below. The landscape in this
screenshot uses the same values for amplitude and frequency as the perlin noise
terrain that does not include octaves that is shown in the previous image in this report.
Additionally, the values of the new parameters are an octave count of 5, a persistence
of 4.0 and a lacunarity of 2.0.

FIGURE 14 FRACTAL PERLIN NOISE TERRAIN OUTPUT

As shown in this image fractal perlin noise adds a lot of detail to the train and makes it
much rougher and rockier.

4.1.3 Worley Noise
The first step when adding Worley Noise to the terrain was to decide what Worley Noise
function will be used if there is one available or whether it would be better to write one
manually. As there is no Worley Noise function in-built into Unreal Engine an in-built
function cannot be used when implementing Worley Noise in the project. There were
many different approaches that could have been chosen for the method of
implementing Worley Noise, one method that could have been used was the free
Unreal Engine Plugin by Rockam (2020) called Fast Noise Generator, this plug in allows
access to the Fast Noise library (Peck, 2024) in Unreal Engine (Rockam, 2020) which is a
library that has a large collection of different noise algorithms in it such as Value Noise,
Perlin Noise and Worley Noise. Although this plug in has many good arguments for
using it over manually programming a Worley Noise Function, the manual programming
option was chosen to complete this task. This was chosen as manually programming
the noise function would give greater control over the code that is being run in the
project and allow the function to be fine-tuned to match the projects needs and for the
function to be better integrated with the rest of the project.

When implementing Worley Noise two functions where created. The first function is
called Initialize Worley Points. This function adds X number of random Vector 2d points
that fit withing the coordinates of the terrain to an array called WorleyPoints. This
method of generating points has been chosen as the points do not need to be
regenerated every time the function is called unlike alternative methods where the
coordinates of the points are generated each time with a Pseudo Random Number
Generator. This will cause this Worley Noise function to be more optimised than other
methods. It is also important to note that this method of generating the points first
could be used to generate the rotator vectors first when implementing perlin noise but
this method is generally not chosen for this as when generating perlin noise there is
much more rotator vectors to store than the number of points needed for a Worley
Noise Algorithm. Additionally, this does not need to be used as the terrain in this project
does not need to be infinitely tile able.

The next step for creating a Worley Noise function is to create the actual function that
will be called for each vertex in the terrain mesh. This function should return a float that
represents the height that that should be added onto that point. The name of this
function matches the naming convention used in the in-built function for perlin noise
which is called PerlinNoise2D, Due to this the name for this function will be
WorleyNoise2D and like the Perlin Noise function require an X and Y coordinate to be
input. This function first works by creating a float value called MinDistance. This value
will be equal to FLT_MAX which is the largest possible float value assignable. After this
variable has been created, each point will be looped though the distance between that
point and the coordinate will be calculated. This calculation will use the
FVector2D::Distance function but could also be calculated using the Euclidean
Distance Formula where (𝑥1, 𝑦1) = the coordinate of the vertex and (𝑥2, 𝑦2) = the
coordinate of the point (Chugani, 2024). This function is shown below.

𝐷𝑖𝑠𝑡𝑎𝑛𝑐𝑒 = √(𝑥2 − 𝑥1)2 + (𝑦2 + 𝑦1)2

FIGURE 15 2D EUCLIDEAN DISTANCE FUNCTION (CHUGANI, 2024)

Ultimately, the FVector2D::Distance function was chosen as it is a relatively simple
function that is in built into Unreal Engine, so a function does not need to be manually
written. After the distance has been calculated it will be compared with the value
stored in the MinDistance variable. If it is smaller than the MinDistance variable, then
the MinDistance variable will be updated to this new value. Once the loop has been
completed the distance between the nearest point and the input coordinate will be
stored in the MinDistance variable so it will simply be returned as the noise value at that
coordinate (Gonzalez and Lowe, 2015). The value returned from this function will be
multiplied by a variable called Worley Amplitude before being added onto the height of
the vertex. This multiplication will cause the effects of the Worley noise function on the
landscape to be more exaggerated. Below is an image of the output of this function on a
landscape mesh. This function creates ridges in the landscape much like real
mountains.

FIGURE 16 WORLEY NOISE LANDSCAPE OUTPUT

4.1.4 Combining Fractal Perlin and Worley Noise
The final algorithm of perlin noise that will be used in this project will create a
heightmap based terrain via a combination of both the fractal Perlin Noise Algorithm
and the Worley noise algorithm. This was done by adding both the results from the
fractal perlin noise algorithm and the Worley noise algorithm together onto the same
height map. The resulting image is an image that had the rocky hills that are created
using the fractal perlin noise algorithm but with the ridges generated via the Worley
noise algorithm added on top of them. This creates a highly detailed and realistic
mountain landscape. An image of the terrain created with this method is shown below.

FIGURE 17 COMBINATION OF FRACTAL NOISE TERRAIN AND WORLEY NOISE TERRAIN

4.1.5 Spline Terrain
The next step was to carve the terrain by using splines. This would function as paths
that the player could ski down. For this a Add Spline Function was created that took a
Array of Vector3 spline point locations as well as the ALandscape component. This
function would add splines by first adding a spline to the terrain and then looping
through each spline point and adding it on to this spline. This function did not work as
intended as after the spline points were added to the terrain. The function to refresh the
terrain so that it deforms around this spline was not accessible via C++. Although, this
function can be used when creating a terrain manually instead of procedurally. Below is
the code that was written to be able to add splines to this terrain but with a comment in
place of where the update landscape function should be.

FIGURE 18 ADD SPLINE FUNCTION (NOT WORKING) (NOTE THIS FUNCTION HAS NOT BEEN INCLUDED IN THE
ARTEFACT)

Due to the splines not working as intended in the plan a different plan for the gameplay
had to be adopted. This will be discussed further in the Checkpoint section of this
chapter.

4.1.6 Terrain Material
The material that is applied to the terrain uses a free to use snow texture and rock
textured that was downloaded from Poly Haven and created by (Tuytel, bN.d; aN.d).

Additionally, the World Aligned Blend node with a Blender Sharpness of 25.0 and a
Blend Bias of -10 was used as the alpha in a lerp node within the blueprint materials
editor in order to create a material that should blend between showing the rock texture
on steep faces and the snow texture on relatively gentle slopes.

4.2 Skier Character Model
The 3D model for the player character was created using blender 4.0. This was chosen
as it is a free 3D modelling software that is powerful enough to create the models
needed in this project. Due to the low poly style of this 3d model it was created by
starting with a basic cube, mirroring it and then extruding and insetting the shape to
create a skier. Below is an image of the initial skier model before it was rigged and
textured and before props such as the goggles and skis have been added to the
character.

FIGURE 19 INITIAL SKIER MODEL

4.2.1 UV Mapping
After the initial model for the skier was created, the model was UV unwrapped in order
to create a UV map of the model. A UV map is a 2d representation of the surface of a 3D
model (Denham, N.d). This will allow textures to be applied to the model without them
being stretched. Below is firstly an image of the model with the seems in red and
secondly an image of the UV map generated when this model is unwrapped with those
seems.

FIGURE 20 SKIER MODEL WITH SEAMS

FIGURE 21 SKIER MODEL UV MAP

4.2.2 Textures
Once this UV Map was generated, textures were applied to the skier. Due to the low
poly style of the skier the fill tool was used in order to texture paint solid colours onto
different parts of the Mesh. Below is an image of firstly the 3D model with the texture
applied to it and secondly an image of the texture created via texture painting.

FIGURE 22 SKIER MODEL WITH TEXTURES

FIGURE 23 SKIER MODEL TEXTURE

4.2.3 Rigging
Once the skier was modelled and textured the next step was to rig the model so that it is
prepped for animations to be created with it. Initially the plugin Rigify was used to

create a rig for the skier mesh. This was chosen to be used as it is a very fast way to
create a rig for a humanoid character that includes a full functioning IK (inverse
kinematics) rig. This method worked perfectly in blender and some animations were
created for the rig before they were imported into Unreal Engine but when they were
imported into Unreal Engine there was major scaling and clipping issues with the
animation. To test that this wasn’t a problem with the import into Unreal Engine,
Autodesk’s FBX review software was used to see that the exported animations looked
like outside of both Blender and Unreal Engine. Below is an image of what the issues
with the exported animations look like.

FIGURE 24 SKIER BROKEN ANIMATIONS IN FBX REVIEW

As shown in the image above, the animations issues where still present in FBX review.
Due to this the rig and animations created via the Rigify plugin was scrapped and a new
rig was created. This new rig was created without the use of any plugins but a YouTube
video tutorial created by Richstubbsanimation (2023) was used to gain the knowledge
necessary to create an IK rig. The IK rig created for the skier character includes a deform
rig that deforms the skiers actual mesh for the animations. A driver rig that this deform
rig copies as well as a few extra bones were added as a control rig. These extra bones
include an extra bone at the hip to allow for the legs and arms to bend when the hip is
moved as well as IK bones at the hands and feet, as well as pole vectors for the knees.

Additionally, these bones had there meshes changed so that they would stand out as
part of the control rig and make the animation process is more intuitive.

FIGURE 25 SKIER RIG

4.2.4 Animations
As discussed previously during the design process 5 animations where identified as
needing to be made. These animations where a idle animation, a pushing forward
animation, a leaning forward animation, a breaking animation and a falling animation.
As shown in the below image all 5 of these animations where created.

FIGURE 26 SKIER ANIMATION LIST

4.2.5 Props
The final step in creating the skier model is to create the props. These props include 2
skier poles to be added to the skier’s hand, 2 skiers to be added to the skier’s feet and a
pair of goggles to be added to the player’s head. Both the poles and skis were created
on one side of the skier and then mirrored to the other side so that they did not have to
be made twice. All of these models have been attached to the rig by parenting them to
the bones at the location required and the same method was used for texturing as was
used to UV map and texture the main mesh of the skier model.

Below is an image of the ski goggles created for the skier. These were created by first
extruding and scaling a 2D plane to create the front of the goggles. Then parts where
extruded outwards to add depth to the goggles.

FIGURE 27 SKI GOGGLES

Next the ski poles were modelled. This was modelled by first spawning a 6-sided
cylinder then this cylinder was scaled to the height required and loop cuts were used to
make the black sections of the poles wider. Additionally, the handle of the poles were
created by extruding out the top of the cylinder, increasing the height of this extrusion,
scaling and then slightly rotating the extruded face. Finally, the top and bottom of the
poles were edited so that they come to a point instead of being a flat face. This does
require the use of tris to be able to achieve this look. An image of the ski pole model is
shown below.

FIGURE 28 SKI POLES 3D MODEL

The final prop created for this model was the skis that the skier is standing on. These
where created very similarly to how the goggles where created. First the surface at the
skier stands on was modelled using a 2D plane then it was given thickness by extruding
downwards to create the bottom of the skis before scaling this to be smaller than the
top. An image of these skis is shown below.

FIGURE 29 SKIS MODEL

4.2.6 Exporting
Finally, the skier’s mesh, animations and texture were exported from blender as an FBX
file. Tested in Autodesk FBX review and then imported into Unreal Engine. Below is an
image of the skier in Unreal Engine with working animations and textures.

FIGURE 30 IMAGE OF SKIER MODEL EXPORTED INTO UNREAL ENGINE

4.3 Character Controller
When creating the character controller for the skier it was initially created by using
Unreal Engines Character Class in C++. This class had many built-in functions that help
when creating a character controller, but the character controller created using this
class was ultimately scrapped as it didn’t allow for the character to be solely controlled
by physics and forces like a static mesh object. Due to this the pawn class was adopted
as the class for the player character. This character uses 4 different Unreal Engine
components. These components are a Capsule Collider that will be used as a parent to
the other components in the class. This component will also be the component that
has forces applied to it for the skier to be able to move. The next component is the
Skeletal Mesh Component this will hold the Mesh and animations created in the
previous section of this report, a Spring arm component that will place the camera in 3rd
person as well as the camera component that allows the scene to be viewed by the
player.

The main 3 actions the player is able to do in the character controller is move forward
(either with a push or by leaning), Steer (Either in one place or by leaning) and by
breaking

A variable called Forward Input will keep track of weather the player is trying to move
forward. When the player clicks the W key this variable will be set to a positive value
and when the player releases this key it will be set to a negative value. If the player is
trying to move forward and is on the ground, there will be a check for what the current
speed of the player is. If it is below the max push speed the skier will start the animation

to push forward. The forward velocity gain by doing this animation is triggered using an
animation notify in the skier animation. This is so that the forward force can be applied
at the correct time in the animation. If the player is above this speed threshold, then the
player will start the leaning animation. While the player is leaning the physics material
on the player will change to a material that has a lower friction. This will cause the
player to maintain their speed for longer, additionally a small forward force will be
added at all times when the player is leaning. This will cause the player to increase
speed if they are leaning downhill. Additionally, this will be multiplied by delta time to
stop the leaning speed increase from changing depending on frame rate. Unlike the
leaning force the pushing force does not need to be multiplied by delta time as it is only
activated on one frame.

When the player is holding the A or D key the player will steer left and right. If the player
is moving at a low speed than the player will rotate on a point but if the player is moving
at a higher speed a force will be added to either side of the player in order to make them
move in a way that simulates leaning. Additionally, this sideways force will be
multiplied by a float curve based on their current speed. This will cause the player to
rotate fast when the player is either moving fast or moving slowly but taper off to a slow
turning speed in the middle. Below is an image of the turning curve.

FIGURE 31 SKIER TURNING CURVE

A backwards force will be added to the player if they click the S key. Like the pushing
forward forces this will be applied to the player via the use of animation notifies. This is
because the force should be added to the player each frame they are in this animation.
Additionally, this force will be multiplied by delta time to avoid the breaking speed
changing depending on frame rate.

4.3.1 Ground Check
As the pawn class is being used instead of the character class, a custom function must
be written to check if the player is grounded or not. This function uses a variable called
ground check distance and casts a trace downwards to see if the player is standing on
the ground. This check distance allows for leeway so that the player can do actions that
require them to be grounded when they are nearly on the ground. Additionally, the
players collision is ignored during this RayCast as if it was not the ray would always
collide with the player. Below is a screenshot of this function.

FIGURE 32 GROUND CHECK FUNCTION

4.3.2 Animation Control
The animations in this project are controlled via an animation montage inside of an
animation blueprint. This montage uses the Boolean variables Moving Forward
(Leaning), Is grounded, Forward Input, Pushing and breaking in order to pick which
animation is chosen to be played.

Below is a screen shot of this animation montage.

FIGURE 33 SKIER ANIMATION MONTAGE

4.4 Checkpoints
In the design chapter of this report the checkpoints in this game were planned to be like
checkpoints in a standard racing game. They would appear along a spline path that has
been created during terrain generation. The player would have to race between them in
order until they reach the finish line, and their score would be determined by the time it
took them but during the implementation of the splines onto the terrain there was an
issue that caused the spline to not be able to be added. Due to this an alternative
design for the gameplay would have to be created.

The new plan that was decided on was for checkpoints to appear all around the terrain
and the player has to collect as much of them as possible before a timer runs out. Their
score would equal the number of checkpoints they have collected.

In order to create these checkpoints, the maximum size for the terrain must first be
calculated. This has to be calculated as the X and Y values used in the terrain
generation refer to what the coordinate of the vertex is in the grid e.g. the second vertex
has a coordinate of (1,0) but the checkpoints need to spawn in world space. To do this

this formula is used where Size X is the same Size variable used to generate the terrain
grid. As well as the equivalent formular to calculate Max Y where Size Y is used instead
of Size X.

𝑀𝑎𝑥 𝑋 = (𝑆𝑖𝑧𝑒𝑋 − 1) × 128

FIGURE 34 MAX X FORMULA

Once this formula is calculated a random checkpoint coordinate is generated using
FMath::RandRange and setting the range between 200 and the maximum coordinate -
200. 200 was used as the start value and taken away from the maximum value as it
prevents the checkpoints from being spawned on the edge of the terrain. Once this
coordinate is calculated the Z value of the checkpoint is calculated by performing a
downwards RayCast on the terrain and finding the height were the ray hit the terrain.
Next a random Y rotation for the checkpoint is generated and the checkpoint is
spawned using the spawn actor function.

This checkpoint has a USphere component that is being used as a trigger. When the
player enters the trigger then the checkpoint will generate another checkpoint into the
world, destroy itself and call a function on the levels game mode that will increase the
score and update the UI that displays the score.

Additionally, the checkpoint uses a 3D model that was created using a primitive
cylinder and extruding and merging edges in blender and is shown in the screen shot
below.

4.5 UI
All of the UI in this project was created using Widget Blueprints. Both the widget for the
heads-up display and the end level screen uses Blueprint Implementable Events that
are called via C++ in the game mode class.

The first blueprint that was created was the main heads-up display (HUD) this HUD
displays the time the remaining in the level.

FIGURE 35 HEADS UP DISPLAY WIDGET

The widget for the end screen displays the score and gives the user the options to
restart the level or return to the main menu.

FIGURE 36 LEVEL END SCREEN WIDGET

The widget for the main menu has an option to quit the game as well as options to play
the game using 4 maps. The 4 maps to choose from is first, the final terrain that was
discussed in the terrain section of this chapter, A level that uses non fractal perlin noise

for the terrain, A level that just uses Worley noise of the terrain and a level that uses
fractal perlin noise.

FIGURE 37 MAIN MENU WIDGET

Chapter 5: Evaluation & Conclusion
The aim of this chapter is to provide a summary of what was achieved in this project as
well as what lessons were learnt. This section will also highlight what future work this
project may lead to.

5.1 Summary of Project
In this project a small video game was created. The main technical focus of the project
was to take a game that uses procedural terrain generation to make the levels in the
game. In this project terrain was created using 2 different noise algorithms, these
algorithms where the Fractal Perlin Noise algorithm and the Worley noise algorithm.
The Fractal Perlin Noise algorithm created the main structure as well as the rock terrain
and the Worley Noise algorithm created ridges in the terrain. These noise algorithms
were separated into 4 different levels, one that uses regular perlin noise terrain, one
that uses fractal perlin noise terrain and one that uses Worley noise terrain.
Additionally, attempts were made to use a spline-based technique to generate paths in
the terrain, but they were not achieved.

A fully functioning physics-based character controller was also created in this project
that included a fully working character model which was fully rigged and animated. A
gameplay loop was also created with checkpoints and time limits.

An analysis of current work in the field of procedural content generation was also
created and summarised via a literature review.

5.2 Critical Evaluation
Although when creating this project the spline-based terrain did not pan out as planned
the terrain created though the use of noise algorithms were highly detailed and realistic.
Additionally, a lesson was learned about contingency planning and risk management
due to this issue. Adaptability was shown in this project as a new gameplay loop was
created when the planned gameplay loop became unfeasible when an important
feature could not be added.

One issue with this project is that the larger the terrain that was created, the slower the
game would run. This could be improved by including level of detail options so that the
terrain that is far away from the player is rendered at a lower detail than the terrain that
is close to the player. This method has been used in other examples of procedurally
generated terrain such as the terrain created by Golubev, Zagarskikh and Karsakov
(2016).

Additionally, the height of the player is not set to just above the terrain, so the player
has to spawn high up in the sky at the start of the game. Calculating where the ground is
before the player spawns and moving them there would solve this issue.

Another note is that controller support could have been added to this project so that it
could be assessable to a player who prefer to use a keyboard.

5.3 Future Work
In future this project could be worked on further by finding a way to successfully
implement the terrain spline. This could either be done by editing the engine code in
Unreal Engine, finding another way to implement this feature or by programming a
custom game engine that would be more suited to this task.

Additionally, there are many more noise algorithms that could be used to generate
terrain so the topic of noise-based terrain generation could be explored further.

References

42 YEAH., 2023. Worley and His Noise (Worley Noise/Voronoi Noise) [online]. Available
from: https://blog.42yeah.is/rendering/noise/2023/09/23/voronoi.html [Accessed 4
May 2025].

Blizzard Entertainment, 2016. Overwatch [online] Xbox: Blizzard Entertainment.

CHUGANI, V., 2024. Understanding Euclidean Distance: From Theory to Practice
[Online]. Available from: https://www.datacamp.com/tutorial/euclidean-distance
[Accessed 5 May 2025].

DENHAM, T. N.d. What is UV Mapping & Unwrapping? [online]. Available from:
https://conceptartempire.com/uv-mapping-unwrapping/ [Accessed 4 May 2025].

DOGO'S SCIENCE 2., 2024. How Does Perlin Noise Work? [online]. Available from:
https://www.youtube.com/watch?v=9B89kwHvTN4 [Accessed 3 March 2025].

DUNN, P. N.d. Hardware Perlin Noise Demonstration [online]. Available from:
https://dunnbypaul.net/perlin/ [Accessed 3 March 2025].

EPIC GAMES. N.d. FMath::PerlinNoise2D [online]. Available from:
https://dev.epicgames.com/documentation/en-us/unreal-
engine/API/Runtime/Core/Math/FMath/PerlinNoise2D [Accessed 25 February 2025].

ETHERINGTON, T. R., 2022. Perlin noise as a hierarchical neutral landscape model.
Web Ecology. 22 (1), pp. 1–6. Available from:
https://we.copernicus.org/articles/22/1/2022/.

GOLUBEV, K., ZAGARSKIKH, A. and KARSAKOV, A., 2016. Dijkstra-based Terrain
Generation Using Advanced Weight Functions. Procedia Computer Science. 101, pp.
152–160. Available from:
https://www.sciencedirect.com/science/article/pii/S1877050916326862.

GONOG, L. and ZHOU, Y., 2019. A Review: Generative Adversarial Networks. pp. 505–
510.

GONZALEZ, P. and LOWE, J., 2015. Cellular Noise. Available from:
https://thebookofshaders.com/12/ [Accessed 3 May 2025].

HART, J. C. , 2001. Perlin noise pixel shaders New York, NY, USA: Association for
Computing Machinery. pp. 87–94. Available from:
https://doi.org/10.1145/383507.383531.

Hello Games, 2016. No Man's Sky [online] Steam: Hello Games.

https://blog.42yeah.is/rendering/noise/2023/09/23/voronoi.html
https://www.datacamp.com/tutorial/euclidean-distance
https://conceptartempire.com/uv-mapping-unwrapping/
https://www.youtube.com/watch?v=9B89kwHvTN4
https://dunnbypaul.net/perlin/
https://dev.epicgames.com/documentation/en-us/unreal-engine/API/Runtime/Core/Math/FMath/PerlinNoise2D
https://dev.epicgames.com/documentation/en-us/unreal-engine/API/Runtime/Core/Math/FMath/PerlinNoise2D
https://we.copernicus.org/articles/22/1/2022/
https://www.sciencedirect.com/science/article/pii/S1877050916326862
https://thebookofshaders.com/12/
https://doi.org/10.1145/383507.383531

HUANG, Y. and YUAN, X., 2023. StyleTerrain: A novel disentangled generative model for
controllable high-quality procedural terrain generation. Computers & Graphics. 116.

HYTTINEN, T., MÄKINEN, E. and PORANEN, T., 2017. Terrain synthesis using noise by
examples New York, NY, USA: Association for Computing Machinery. pp. 17–25.
Available from: https://doi.org/10.1145/3131085.3131099.

Ironhide Game Studio., 2013. Kingdom Rush: Frontiers [online]. Steam: Ironhide Game
Studio.

JAIN, A., SHARMA, A. and RAJAN, K., S., 2024. Learning Based Infinite Terrain
Generation with Level of Detailing. In: 2024 International Conference on 3D Vision
(3DV). pp. 1048–1058.

KORA, L., 2007. Implementation of Perlin Noise on GPU An Independent study [online].
Available from:
https://www.sci.utah.edu/~leenak/IndStudy_reportfall/Perlin%20Noise%20on%20GPU
.html [Accessed 5 May 2025].

LAGUE, S., 2016. Procedural Landmass Generation (E01: Introduction) [online].
Available from:
https://www.youtube.com/watch?v=wbpMiKiSKm8&list=PLFt_AvWsXl0eBW2EiBtl_sxm
DtSgZBxB3 [Accessed 8 January 2025].

LIU, S., CHAORAN, L., YUE, L., HENG, M., XIAO, H., YIMING, S., LICONG, W., ZE, C.,
XIANGHAO, G., HENGTONG, L., YU, D. and QINTING, T., 2019. Automatic generation of
tower defense levels using PCG New York, NY, USA: Association for Computing
Machinery.

Medagon Industries, 2024. Lonely Mountains: Snow Riders [online] Steam: Medagon
Industries.

Mojang, 2011. Minecraft [online] PC: Mojang.

Ninja Kiwi, 2018. Bloons Tower Defense 6 [online] Steam: Ninja Kiwi

PECH, A., LAM, C. P. and MASEK, M., 2020. Quantifiable Isovist and Graph-Based
Measures for Automatic Evaluation of Different Area Types in Virtual Terrain Generation.
IEEE Access. 8.

PECK, J., 2024. Fast Noise Lite [online]. Available from:
https://github.com/Auburn/FastNoiseLite/tree/FastNoise-Legacy [Accessed 4 May
2025].

https://doi.org/10.1145/3131085.3131099
https://www.sci.utah.edu/~leenak/IndStudy_reportfall/Perlin%20Noise%20on%20GPU.html
https://www.sci.utah.edu/~leenak/IndStudy_reportfall/Perlin%20Noise%20on%20GPU.html
https://www.youtube.com/watch?v=wbpMiKiSKm8&list=PLFt_AvWsXl0eBW2EiBtl_sxmDtSgZBxB3
https://www.youtube.com/watch?v=wbpMiKiSKm8&list=PLFt_AvWsXl0eBW2EiBtl_sxmDtSgZBxB3
https://github.com/Auburn/FastNoiseLite/tree/FastNoise-Legacy

PERLIN, K., 1985. An image synthesizer. SIGGRAPH Comput.Graph. 19 (3), pp. 287–
296. Available from: https://doi.org/10.1145/325165.325247.

RAOUF, T. N.d. Perlin Noise: A Procedural Generation Algorithm [online]. Available
from: https://rtouti.github.io/graphics/perlin-noise-algorithm [Accessed 1 March 2025].

RICHSTUBBSANIMATION., 2023. Easy and Quick Character Rigging in Blender - Blender
Basics Tutorial [online]. Available from:
https://www.youtube.com/watch?v=jIwrswJEFBQ [Accessed 8 March 2025].

ROCKAM., 2020. Fast Noise Generator [online]. Available from:
https://www.fab.com/listings/c1d444fc-54cc-4f11-8a4a-c0c41112a321 [Accessed 4
May 2025].

STÅLBERG, O., MEREDITH, R., KVALE, M. and Plausible Concept., 2018. Bad North
[online] Steam: Raw Fury.

SU, S., XU, W., TANG, H., QIN, B. and WANG, X., 2024. Edge-protected IDW-based DEM
detail enhancement and 3D terrain visualization. Computers & Graphics. 122.

SUMMERVILLE, A., SNODGRASS, S., GUZDIAL, M., HOLMGÅRD, C., HOOVER, A. K.,
ISAKSEN, A., NEALEN, A. and TOGELIUS, J., 2018. Procedural Content Generation via
Machine Learning (PCGML). IEEE Transactions on Games. 10 (3), pp. 257–270.

TUYTEL, R. N.d.a. Rock Ground 04 [online]. Available from:
https://polyhaven.com/a/rocks_ground_04 [Accessed 30 April 2025].

TUYTEL, R. N.d.b. Snow 02 [online]. Available from: https://polyhaven.com/a/snow_02
[Accessed 30 April 2025].

UNITY. N.d. Mathf.PerlinNoise [online]. Available from:
https://docs.unity3d.com/6000.0/Documentation/ScriptReference/Mathf.PerlinNoise.
html [Accessed 7 January 2025].

WORLEY, S. , 1996. A cellular texture basis function New York, NY, USA: Association for
Computing Machinery. pp. 291–294. Available from:
https://doi.org/10.1145/237170.237267.

https://doi.org/10.1145/325165.325247
https://rtouti.github.io/graphics/perlin-noise-algorithm
https://www.youtube.com/watch?v=jIwrswJEFBQ
https://www.fab.com/listings/c1d444fc-54cc-4f11-8a4a-c0c41112a321
https://polyhaven.com/a/rocks_ground_04
https://polyhaven.com/a/snow_02
https://docs.unity3d.com/6000.0/Documentation/ScriptReference/Mathf.PerlinNoise.html
https://docs.unity3d.com/6000.0/Documentation/ScriptReference/Mathf.PerlinNoise.html
https://doi.org/10.1145/237170.237267

Appendix
A: Renders of Player 3D Model

FIGURE 38 UNTEXTURED SKIER MODEL RENDER

FIGURE 39 SKIER UV MAP RENDER

FIGURE 40 FINAL SKIER RENDER

B: Instructions for Use

This Project has been created by James Edwards, Student ID 25295039

This project has been created using Unreal Engine 5.5 so it is recommended that it is
ran using that version of Unreal Engine.

The first scene that is to be ran is the main menu scene

- - - - - Controls - - - - -

W - Move forward

A - Move Left

D - Move Right

S - Break

- - - - - Objective - - - - -

Collect as many flags as possible within the time limit in each level

- - - - - Levels - - - - -

Main - Level that uses Landscape that is generated using a combination of Fractal
Perlin Noise and Worley Noise (Playable by clicking play in the main menu)

Perlin_Level - Level that uses a Landscape generated with a Non-Fractal Perlin
Algorithm

Fractal_Perlin_Level - Level that uses a Landscape with the Fractal Perlin Noise
Algorithm

Worley_Level - Level that uses Landscape that uses the Worley Noise algorithm

